UR5 bi-manual setup

/assets/imgs/UR5.jpg

Overview:

  • Precise position and velocity control
  • Interchangeable grippers (parallel, tri-fingers, Allegro hand, ...)
  • Embedded cameras and force-torque sensors on each wrist
  • Rigid workbench and well modeled environment
  • Highly customizable through large variety anchor points (for external cameras, objects, ...)

Main usages:

  • Policy learning in controlled environments
Publications
PolarNet: 3D Point Clouds for Language-Guided Robotic Manipulation
Shizhe Chen, Ricardo Garcia, Ivan Laptev, Cordelia Schmid
CoRL, 2023
Robust visual sim-to-real transfer for robotic manipulation
Ricardo Garcia, Robin Strudel, Shizhe Chen, Etienne Arlaud, Ivan Laptev, Cordelia Schmid
IROS, 2023
Instruction-driven history-aware policies for robotic manipulations
Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia, Makarand Tapaswi, Ivan Laptev, Cordelia Schmid
CoRL, 2022
Assembly Planning from Observations under Physical Constraints
Thomas Chabal, Robin Strudel, Etienne Arlaud, Jean Ponce, Cordelia Schmid
IROS, 2022
Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement Planning
Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan Laptev, Justin Carpentier, Mathieu Aubry, Josef Sivic
RAL, 2020
Learning to combine primitive skills: A step towards versatile robotic manipulation
Robin Strudel, Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Josef Sivic, Cordelia Schmid
ICRA, 2020
Learning visual policies for building 3D shape categories
Alexander Pashevich, Robin Strudel, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid
IROS, 2020
Learning to augment synthetic images for sim2real policy transfer
Alexander Pashevich, Robin Strudel, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid
IROS, 2019

Manipulation Computer Vision Machine Learning